X10e: Patch a Gap in Healthcare

R42 Demo Day, Aug 16, 2024

info@x10e.com

X10e

What if you were able to <u>continuously</u> learn about your health without a blood test?

Our Mission

Develop evidence based non-invasive <u>e-skin sensors</u> for measuring your body's signals; anytime, anywhere

70% medical decisions relying on **invasive laboratory tests**¹

40% US patients **skip** annual physical exams¹

Less invasive => more frequent tests = **Earlier Diagnosis**

hutte, A.E., Kollias, A. & Stergiou, G.S. Blood pressure and its variability: classic and novel measurement techniques. Nat Rev Cardiol 19, 643–654 (2022)

Biomarkers vary between 10-40% in a day

Non-invasive, continuous monitoring = Early & Insightful Data

Redefining wearables From wellness to clinical utility

Wellness

- Limited sensor technology (Vital signs: T⁰, HR, BP)
- Designed for healthy consumers
- User misinterpretation

Clinical

- Emerging technology (single metric: glucose)
 Designed for those with medical needs
- Clear actionable signal

Wearables market from \$150M in 2016 to ~\$31B in 2026

Metabolic Syndrome A progressive cluster of conditions requiring continuous monitoring

Impact on health

- Increased risk of:
 - diabetes
 - heart disease
 - stroke
- 1/3rd of the US population¹
- Double healthcare cost²

In the clinic

- Increased Body Mass Index
- Increased blood pressure
- Elevated Triglycerides
- Reduced Cholesterol
- Elevated Fasting Glucose

Identifying Biomarkers for Metabolic Syndrome

Biomarker	Macromolecule Group	Function
Glucose	Carbohydrate	Main energy source
Triglycerides	Lipid	Energy storage and transport
Cholesterol	Lipid	Cell membrane structure
Insulin	Hormone	Regulates blood glucose levels
Leptin	Hormone	Regulates hunger and metabolism
Adiponectin	Hormone	Enhances insulin sensitivity, reduces inflammation
Uric Acid	Purine metabolite	Waste product of purine metabolism
C-reactive protein (CRP)	Protein	Marker of inflammation

Specific & Predictive

Identifying Biomarkers for Metabolic Syndrome

Biomarker	Macromolecule Group	Function	In Sweat
Glucose	Carbohydrate	Main energy source	Yes
Triglycerides	Lipid	Energy storage and transport	No
Cholesterol	Lipid	Cell membrane structure	No
Insulin	Hormone	Regulates blood glucose levels	No
Leptin	Hormone	Regulates hunger and metabolism	No
Adiponectin	Hormone	Enhances insulin sensitivity, reduces inflammation	No
Uric Acid	Purine metabolite	Waste product of purine metabolism	Yes
C-reactive protein (CRP)	Protein	Marker of inflammation	No

Identifying Biomarkers for Metabolic Syndrome

Biomarker	Macromolecul e Group	Function	In Sweat	In Interstitial fluid	
Glucose	Carbohydrate	Main energy source	Yes	Yes	
Triglycerides	Lipid	Energy storage and transport	Νο	Yes	
Cholesterol	Lipid	Cell membrane structure	No	Yes	
Insulin	Hormone	Regulates blood glucose levels	No	Yes	
Leptin	Hormone	Regulates hunger and metabolism	No	Yes	
Adiponectin	Hormone	Enhances insulin sensitivity, reduces inflammation	Νο	Yes	
Uric Acid	Purine metabolite	Waste product of purine metabolism	Yes	Yes	
C-reactive protein (CRP)	Protein	Marker of inflammation	Νο	Yes	

Interstitial Fluid: Golden Reservoir for Biomarkers

→ Non-invasive nor painful extraction

• What are our biomarker concentration in the interstitial fluid?

Extraction of Interstitial Fluid versus Blood

X

Extraction of Interstitial Fluid versus Blood

Meniscus shows interstitial fluid in the vial

Biomarker Concentration Findings

Biomarker Concentration Findings

X10e

2- to 3-fold less hormone (adiponectin) in ISF than in Blood

Integration into Wearable Sensor

Meniscus shows interstitial fluid in the vial

In situ analysis with microfluidic

Wang et al., A wearable electrochemical biosensor for the monitoring of metabolites and nutrients, Nature BioEng (2022)

Optical sensor array

Sensor module

Microfluid needle

Adhesive substrate

Microfluidic array

Sensor Prototype

Continuous monitoring of biomolecules for metabolic and chronic diseases

Continuous monitoring of biomolecules for metabolic and chronic diseases

X10e

Generative Health Model

Personalized Health Management

Business Model

Revenue: recurring revenue based on subscription of device

Leverage insurance companies reimbursement (CPD codes)

Sales motion: B2B2C via medical distributors

Expertise in Biophysics, Sensors, and Bioengineering

Silvia Veronese, PhD Founder and CEO X10e Mentor

Yann Sakref, PhD BioPhysicist PhD in Physics École Normale Supérieure

Mark MelnyKowycz, PhD Sensor Engineer PhD in Physics

Ecole Polytechnique de Zurich

Anupama Mahabhashyam Technical Product lead Broadcom Stanford Business School

Julian Pena ^{BioEngineer} BS Bioengineering University of California at Merced

Cristina Dalle Ore, PhD

Sensor Technology Expert NASA, Bayer Crop Science Fellow Mentor

Amit Goldman, EMBA

DigitalDx Ventures Longevity Education Hub

Shaun Ranadé BioEngineering USPTO, Colgate

THANK YOU

info@x10e.com www.x10e.com

APPENDIX Project Details

Leptin and Adiponectin

- Obesity, coronary artery disease and the metabolic syndrome (MS) are characterized by an increase in circulating leptin concentrations, in parallel to a decrease in blood levels of adiponectin.
- Leptin -which has an appetite regulating effects- increases due to Leptin resistance
- Adiponectin -which has insulin sensitizing effect- decreases due to chronic inflammation and insulin resistance.

Experiment with ISF Labs

<u>Blood extraction:</u>

Interstitial fluid extraction:

Microneedle (<1mm)

Collector

Fluid

Artificial Antibodies: Molecular Imprinted Polymer

Majority of metabolites non-electroactive

➡ Indirect detection

A RAR (redox-active nanoreporter) layer sandwiched between the graphen and MIP layer: selective adsorption reduces exposure to RAR.

Biomarkers in the sweat

Analyte category	Analyte	Health condition		
Electrolytes	Na ⁺	Dehydration, hyponatremia, electrolyte imbalance	40-43,45,47	
	Cl	Dehydration, cystic fibrosis	17,50,51	
	K ⁺	Hypokalemia, muscle cramps	52,53	
	Ca ²⁺	Myeloma, cirrhosis, renal failure, acid–base balance disorder	54	
	NH ⁴⁺	Shift from aerobic to anaerobic metabolic conditions	9,41,55	
	PH	Pathogenesis of skin diseases, wound healing	30,38,43,143	
Metabolites	Glucose	Diabetes	17,33,52,103	
	Lactate	Shift from aerobic to anaerobic metabolic conditions	7,11,58,37	
	Alcohol	Inebriation	16,76,77	
	Uric acid	Renal dysfunction, gout	61,144	
Drugs	Caffeine	Coronary syndrome, hypertension, Depression	63,145	
	Levodopa	Parkinson's disease	64,89	
Trace metals	Zn ²⁺	Stress and immune system-induced muscle damage	44,66,67	
	Cu ²⁺	Rheumatoid arthritis, Wilson's disease, cirrhosis of the liver	44,66,68	
Other analytes (hormones, cytokines, proteins, etc.)	Interleukin 6	Insulin activity, immune responses in cancer therapy	69,70,145	
	Cortisol	Stress	59,69,72,73	
	Tyrosine	Metabolic disorders, tyrosinemia	74	
	Neuropeptide Y	Stress	30,75	

Biomarkers diffusion to ISF

R42

Friedel *et al.,* Opportunities and challenges in the diagnostic utility of dermal interstitial fluid, Nature Biomedical Eng. (2022)

Health Agent Architecture:

X10e

R42

Competitors in Wearables:

Feature/Chara cteristic	Apple Watch	Fitbit Sense	Garmin Venu 2	Withings ScanWatch	Samsung Galaxy Watch 4	Dexcom G6	Abbott FreeStyle Libre	GlucoTrack	Lumen
Device Type	Smartwatch	Smartwatch	Smartwatch	Smartwatch	Smartwatch	Glucose Monitor	Glucose Monitor	Glucose Monitor	Metabolic Tracker
Fitness Tracking	~	~	~	~	~	×	x	×	x
Heart Rate Monitoring	~	~	~	~	~	×	x	×	x
ECG Monitoring	~	v	×	v	~	×	×	×	×
SpO2 Monitoring	~	v	~	~	~	×	×	×	x
Glucose Monitoring	x	×	x	x	x	~	~	~	x
Stress Monitoring	x	~	×	x	~	×	×	×	x
Body Composition Analysis	x	x	x	x	~	x	x	x	x
Blood Pressure Monitoring	x	x	x	x	~	x	×	×	x
Metabolic Tracking	x	×	×	x	×	x	×	×	~
Unique Features	Integration with Apple	EDA sensor for stress	Advanced fitness metrics,	Medical-grade ECG, sleep	Body composition analysis,	Continuous glucose monitoring	Flash glucose monitoring,	Non-invasive glucose	Measures CO2 levels to indicate
	ecosystem, fall detection	monitoring, skin temperature	Pulse Ox sensor	apnea detection	Wear OS, blood pressure	with alerts and data sharing	real-time data, easy to use	monitoring with ultrasonic,	metabolic state
		sensor						electromagnetic , and thermal	
Market Presence	Strong global presence	Strong presence, acquired by	Strong in fitness-focused	Niche market, focus on	Strong global presence,	Leading in diabetes	Strong presence in diabetes	Emerging player,	Niche market, focus on
	and large user base	Google	market	medical-grade features	especially in Asia	management	care	specialized focus	metabolic health

X

l0e

Cardiovascular

- Vascular flow
- Cardiac output

Blood Vessel mgmt

- Volumetric Blood Flow
- Blood Pressure
- Analysis of pulsatile part of the blood stream

Biomarkers

Electrolytes (sodium, potassium, chloride, ammonium, and calcium)
Metabolites (glucose, lactate, and alcohol)

Vitals

- Heart rate
- Temperature
- Motions
- ECGs

Small molecules

- Cortisol
- Urea
- Tyrosine

Hormonal

Testosterone Total/Free Prolactin DHEA-Sulfate Estradiol (E2) Luteinizing Hormone (LH) Follicle Stimulating Hormone (FSH) Anti-Mullerian Hormone (AMH) Sex Hormone Binding Globulin (SHE

- Cardiovascular

Pathophysiology

- Vascular flow
- Cardiac output

Biomarkers

Electrolytes (sodium, potassium, chloride, ammonium, and calcium)
Metabolites (glucose, lactate, and alcohol)

Daily Management

- Volumetric Blood Flow
- Blood Pressure
- Analysis of pulsatile part of the blood stream

Vitals

- Heart rate
- Temperature
- Motions
- ECGs

Small molecules

- Cortisol
- Urea
- Tyrosine

Hormonal

Testosterone Total/Free Prolactin DHEA-Sulfate Estradiol (E2) Luteinizing Hormone (LH) Follicle Stimulating Hormone (FSH) Anti-Mullerian Hormone (AMH) Sex Hormone Binding Globulin (SHE

- Diabetes ·

Physiology

- Weight gain
- Glucose excess
- Insulin deficiency/resistance

Biomarkers

 Metabolites (glucose, lactate, and alcohol)

Small molecules

 high levels of free fatty acids

Periodic Management

• A1C

Vitals

- Weight monitoring
- Glucose monitoring

Hormonal

- Insulin
- Glucagon
- Amylin
- GLP1

- Breast Cancer

Pathophysiology

- DNA
- Genetic mutations

Periodic Management

- Mammogram
- Family history

Biomarkers

- Histological:
 - Hormone receptors, HER2,Ki-67
- Serological:
 Ki-67, CA 15-3, BAX,
 - and Bcl-2

Vitals

- -

_

Small molecules

- HER2
- CDK4/6 inhibitors
- EGFR inhibitors
- Afatinib
- Cabozantinib

Hormonal

- Estrogen
- Progesterone

- Hardware schematics -

Low-Cost, Portable Biosensor for Blood Protein Detection

- Logos -

Chemical sensing for Metabolic Syndrome Summary

- 1. Biomarkers of metabolic syndrome.
- 2. Interstitial fluid: minimally invasive and very informative.
- 3. **Preliminary testing** for measuring the concentration of these biomarkers in interstitial fluid.

➡ Stepping stones towards wearables

Targeted Markets and Use cases

Markets

\$17 bn TAM

Use Cases

- In-hospital/Remote Patient Monitoring
- Clinical Trials
- Continuous Monitoring
- Medication Tracking

- Fitness Tracking
- Stress Management
- Sleep Analysis

<mark>Julian</mark>

LLM modeling

LLM via a robust

comprehensive

recommendation.

LLM Response

Based on your high blood pressure, low vitamin D levels, and elevated blood sugar, you should incorporate leafy greens and fatty fish into your diet for better heart health and increased vitamin D. Additionally, moderate daily exercise such as brisk walking for 30 minutes can help manage your blood pressure and blood sugar levels.

X10e

